SET 2: Applied Mathematics

Tutorial 8

1. Find the domain of the following functions:

(a)
$$f(x) = x^2 - 3x - 2$$

[Ans. R]

(b)
$$f(x) = \frac{1}{x+2}$$

[Ans. $R \setminus \{-2\}$ or $R - \{-2\}$ or $(-\infty, -2) \cup (-2, \infty)$]

(c)
$$f(x) = \frac{2x-3}{x^2-3x+2}$$

[Ans. $R \setminus \{1, 2\}$ or $R - \{1, 2\}$]

(d)
$$f(x) = \frac{x^2 + 3x + 5}{x^2 - 5x}$$

[Ans. $R \setminus \{0, 5\}$ or $R - \{0, 5\}$]

(e)
$$f(x) = \sqrt{x-2}$$

[Ans. $[2, \infty)$]

(f)
$$f(x) = \frac{1}{\sqrt{1-x}}$$

[Ans. $(-\infty, 1)$]

(g)
$$f(x) = |x+5|$$

[**Ans.** R]

2. Find the domain and range of the following functions:

(a)
$$f(x) = \frac{1}{\sqrt{x-5}}$$

[Ans. Domain: $(5, \infty)$, Range: $(0, \infty)$]

(b)
$$f(x) = |x-1|$$

[Ans. Domain: R, Range: $[0, \infty)$]

(c)
$$f(x) = \sqrt{9 - x^2}$$

[Ans. Domain: [-3, 3], Range: [0, 3]]

(d)
$$f(x) = \sqrt{x^2 - 16}$$

[Ans. Domain: $(-\infty, -4]$ U $[4, \infty)$, Range: $[0, \infty)$]

3. Determine whether each of the functions below is even, odd or neither:

(a)
$$f(x) = x^6 + x^3 - 2x^2 - 1$$

[Ans. Neither even nor odd]

(b)
$$f(x) = \frac{x^2}{1 - x^4}$$

[Ans. Even]

(c)
$$f(x) = \frac{x}{1 - x^2}$$

[Ans. Odd]

4. If $f(x) = 3x^2 - 4x - 5$, find:

(a)
$$f(4)$$

[**Ans.** 27]

(b)
$$f(-3)$$

[**Ans.** 34]

[Ans. $3a^2 - 4a - 5$]

(d)
$$f(2-a)$$

[Ans. $3a^2 - 8a - 1$]

5. If $f(x) = \frac{15}{x-3}$, $g(x) = 16 + 3x - x^2$ and $h(x) = \sqrt{25 - x^2}$, find:

(a) f(0)

[Ans. -5]

(b) g(5)

[**Ans.** 6]

(c) h(-4)

- [**Ans.** 3]
- (d) f(0) + g(4) h(-3) [Ans. 3]

6. Draw the graph the following functions by using the points in the tables below:

(a) y = f(x) = 2x - 3

х	-1	0	1	2	3	4
f(x)						

(b) $y = f(x) = x^2 - 2x + 3$

х	- 1	- 0.5	0	0.5	1	1.5	2	2.5	3
f(x)									

(c) $y = f(x) = -2x^2 + 16x - 31$

х	2	2.5	3	3.5	4	4.5	5	5.5	6
f(x)									

(d) $y = f(x) = 3^x$

х	- 2	- 1.5	- 1	- 0.5	0	1	2
f(x)							

(e) $y = f(x) = \log_3 x$

х	0.05	0.1	0.5	1	2	3	4	5	6
f(x)									

Ans. to problem 6.c

х	2	2.5	3	3.5	4	4.5	5	5.5	6
f(x)	-7	-3.5	-1	0.5	1	0.5	-1	-3.5	-7

Ans. to problem 6.d

	х	- 2	- 1.5	- 1	- 0.5	0	0.5	1	2
ſ	f(x)	0.11	0.19	0.33	0.58	1	1.73	3	9

	х	0.05	0.1	0.5	1	2	3	4	5	6
ſ	f(x)	- 2.73	-2.10	-0.63	0	0.63	1	1.26	1.46	1.63

7. For the function of problem 6.b, find:

(a) the zeros graphically. [Ans. No zeros]

(b) the minimum value graphically. [**Ans.** 2 at x = 1]

(c) the zeros algebraically.

[Ans. No zeros] (d) the minimum value algebraically. [Ans. 2 at x = 1]

8. For the function of problem 6.c, find:

(a) the zeros graphically. [Ans. x = 3.3 and x = 4.7]

(b) the maximum value graphically. [**Ans.** 1 at x = 4]

(c) the zeros algebraically. [Ans. x = 3.3 and x = 4.7]

(d) the maximum value algebraically. [**Ans.** 1 at x = 4]

- **9.** A soft-drink manufacturer has daily production costs of $C = 70,000 120x + 0.055x^2$, where C is the total cost (in dollars) and x is the number of units produced. Estimate numerically the number of units that should be produced each day to yield a minimum cost. [Ans. x = 1090]
- 10. A field is to be marked off in the shape of a rectangle, with one side formed by a straight river and as shown in the figure below. If 100 m is available for fencing, find the dimensions of the rectangle of maximum possible area. [Ans. 25 m by 50 m]

